blob: abf5ef7fbddeef6dc9275de0ffd1f561183e1abc (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
|
#include "utf8.h"
#include <stdio.h>
bool utf8_byte_is_unicode_start(uint8_t byte) { return (byte & 0xc0) == 0xc0; }
bool utf8_byte_is_unicode_continuation(uint8_t byte) {
return utf8_byte_is_unicode(byte) && !utf8_byte_is_unicode_start(byte);
}
bool utf8_byte_is_unicode(uint8_t byte) { return (byte & 0x80) != 0x0; }
bool utf8_byte_is_ascii(uint8_t byte) { return !utf8_byte_is_unicode(byte); }
uint32_t utf8_nbytes_in_char(uint8_t byte) {
// length of char is the number of leading ones
// flip it and count number of leading zeros
uint8_t invb = ~byte;
return __builtin_clz((uint32_t)invb) - 24;
}
// TODO: grapheme clusters, this returns the number of unicode code points
uint32_t utf8_nchars(uint8_t *bytes, uint32_t nbytes) {
uint32_t nchars = 0;
uint32_t expected = 0;
for (uint32_t bi = 0; bi < nbytes; ++bi) {
uint8_t byte = bytes[bi];
if (utf8_byte_is_unicode(byte)) {
if (utf8_byte_is_unicode_start(byte)) {
expected = utf8_nbytes_in_char(byte) - 1;
} else { // continuation byte
--expected;
if (expected == 0) {
++nchars;
}
}
} else { // ascii
++nchars;
}
}
return nchars;
}
// TODO: grapheme clusters, this uses the number of unicode code points
uint32_t utf8_nbytes(uint8_t *bytes, uint32_t nbytes, uint32_t nchars) {
uint32_t bi = 0;
uint32_t chars = 0;
uint32_t expected = 0;
while (chars < nchars && bi < nbytes) {
uint8_t byte = bytes[bi];
if (utf8_byte_is_unicode(byte)) {
if (utf8_byte_is_unicode_start(byte)) {
expected = utf8_nbytes_in_char(byte) - 1;
} else { // continuation char
--expected;
if (expected == 0) {
++chars;
}
}
} else { // ascii
++chars;
}
++bi;
}
return bi;
}
|