summaryrefslogtreecommitdiff
path: root/racer-tracer/src/main.rs
blob: c9ed169d2803345e2174161b0343235b1eac6275 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
#[macro_use]
mod error;
mod camera;
mod geometry;
mod image;
mod ray;
mod scene;
mod util;
mod vec3;

use std::{
    borrow::Borrow,
    sync::{Arc, Mutex, RwLock},
    vec::Vec,
};

use geometry::Hittable;
use minifb::{Key, Window, WindowOptions};
use rayon::prelude::*;

use crate::camera::Camera;
use crate::error::TracerError;
use crate::geometry::sphere::Sphere;
use crate::image::Image;
use crate::ray::Ray;
use crate::scene::Scene;
use crate::util::random_double;
use crate::vec3::Vec3;

fn ray_color(scene: &dyn Hittable, ray: &Ray) -> Vec3 {
    if let Some(hit_record) = scene.hit(ray, 0.0, std::f64::INFINITY) {
        //return hit_record.color;
        return 0.5 * (hit_record.normal + Vec3::new(1.0, 1.0, 1.0));
    }

    // TODO: make sky part of scene.
    // Sky
    let unit_direction = ray.direction().unit_vector();
    let t = 0.5 * (unit_direction.y() + 1.0);
    (1.0 - t) * Vec3::new(1.0, 1.0, 1.0) + t * Vec3::new(0.5, 0.7, 1.0)
}

fn raytrace(scene: &dyn Hittable, camera: &Camera, image: &Image, row: usize) -> Vec<u32> {
    let mut colors: Vec<Vec3> = vec![Vec3::default(); image.width as usize];
    colors.iter_mut().enumerate().for_each(|(i, col)| {
        for _ in 0..image.samples_per_pixel {
            let u: f64 = (i as f64 + random_double()) / (image.width - 1) as f64;
            let v: f64 = (row as f64 + random_double()) / (image.height - 1) as f64;
            *col += ray_color(scene, &camera.get_ray(u, v));
        }
    });

    // TODO: Could do rolling average
    let mut buffer: Vec<u32> = vec![0; image.width as usize];
    for i in 0..image.width {
        buffer[i] = (colors[i] / image.samples_per_pixel as f64).as_color();
    }

    buffer
}

type Data = (Arc<RwLock<Vec<u32>>>, Arc<Camera>, Arc<Image>, usize);

fn render(
    buffer: Arc<RwLock<Vec<u32>>>,
    camera: Arc<Camera>,
    image: Arc<Image>,
    scene: Box<dyn Hittable + std::marker::Sync>,
) {
    let scene: &(dyn Hittable + Sync) = scene.borrow();

    let v: Vec<Data> = (0..image.height)
        .map(|row| {
            (
                Arc::clone(&buffer),
                Arc::clone(&camera),
                Arc::clone(&image),
                row,
            )
        })
        .collect();

    v.par_iter().for_each(|(buf, camera, image, row)| {
        let start = row * image.width;
        let end = start + image.width;
        let col_buf = raytrace(scene.borrow(), camera, image, *row);
        let mut buf = buf.write().expect("Failed to get screen buffer lock."); // TODO: No except
        buf[start..end].copy_from_slice(col_buf.as_slice());
    });
}

fn create_scene() -> Scene {
    let mut scene = Scene::new();
    let sphere1 = Sphere::new(Vec3::new(0.0, 0.0, -1.0), 0.5, Vec3::new(0.0, 1.0, 0.0));
    let sphere2 = Sphere::new(
        Vec3::new(0.0, -100.5, -1.0),
        100.0,
        Vec3::new(0.0, 1.0, 0.0),
    );
    scene.add(Box::new(sphere1));
    scene.add(Box::new(sphere2));
    scene
}

fn run(aspect_ratio: f64, screen_width: usize, samples: usize) -> Result<(), TracerError> {
    let image = Arc::new(image::Image::new(aspect_ratio, screen_width, samples));
    let camera = Arc::new(camera::Camera::new(&image, 2.0, 1.0));
    let scene: Box<dyn Hittable + Sync + Send> = Box::new(create_scene());
    let screen_buffer: Arc<RwLock<Vec<u32>>> =
        Arc::new(RwLock::new(vec![0; image.width * image.height]));

    let window_res: Arc<Mutex<Result<(), TracerError>>> = Arc::new(Mutex::new(Ok(())));

    rayon::scope(|s| {
        s.spawn(|_| {
            render(
                Arc::clone(&screen_buffer),
                camera,
                Arc::clone(&image),
                scene,
            )
        });
        s.spawn(|_| {
            let result = Window::new(
                "racer-tracer",
                image.width,
                image.height,
                WindowOptions::default(),
            )
            .map_err(|e| TracerError::FailedToCreateWindow(e.to_string()))
            .map(|mut window| {
                window.limit_update_rate(Some(std::time::Duration::from_micros(16600)));
                window
            })
            .and_then(|mut window| {
                // TODO: Only re-render window then buffer is changed
                while window.is_open() && !window.is_key_down(Key::Escape) {
                    // Sleep a bit to not hog the lock on the buffer all the time.
                    std::thread::sleep(std::time::Duration::from_secs(1));

                    screen_buffer
                        .read()
                        .map_err(|e| TracerError::FailedToUpdateWindow(e.to_string()))
                        .and_then(|buf| {
                            window
                                .update_with_buffer(&buf, image.width, image.height)
                                .map_err(|e| TracerError::FailedToUpdateWindow(e.to_string()))
                        })?
                }
                Ok(())
            });

            if result.is_err() {
                let mut a = window_res.lock().expect("Failed to get result lock.");
                *a = result;
            }
        });
    });

    let res = (window_res.lock().expect("Failed to get result lock.")).clone();
    res
}

fn main() {
    if let Err(e) = run(16.0 / 9.0, 1200, 10) {
        eprintln!("{}", e);
        std::process::exit(e.into())
    }
}