blob: 3afef40d1cb8566ce34d26faebfdffc556ba997f (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
|
#include "utf8.h"
#include <stdio.h>
bool utf8_byte_is_unicode_start(uint8_t byte) { return (byte & 0xc0) == 0xc0; }
bool utf8_byte_is_unicode_continuation(uint8_t byte) {
return utf8_byte_is_unicode(byte) && !utf8_byte_is_unicode_start(byte);
}
bool utf8_byte_is_unicode(uint8_t byte) { return (byte & 0x80) != 0x0; }
bool utf8_byte_is_ascii(uint8_t byte) { return !utf8_byte_is_unicode(byte); }
// TODO: grapheme clusters, this returns the number of unicode code points
uint32_t utf8_nchars(uint8_t *bytes, uint32_t nbytes) {
uint32_t nchars = 0;
for (uint32_t bi = 0; bi < nbytes; ++bi) {
if (utf8_byte_is_ascii(bytes[bi]) || utf8_byte_is_unicode_start(bytes[bi]))
++nchars;
}
return nchars;
}
// TODO: grapheme clusters, this uses the number of unicode code points
uint32_t utf8_nbytes(uint8_t *bytes, uint32_t nchars) {
uint32_t bi = 0;
uint32_t chars = 0;
while (chars < nchars) {
uint8_t byte = bytes[bi];
if (utf8_byte_is_unicode_start(byte)) {
++chars;
// length of char is the number of leading ones
// flip it and count number of leading zeros
uint8_t invb = ~byte;
bi += __builtin_clz((uint32_t)invb) - 24;
} else {
++chars;
++bi;
}
}
return bi;
}
|